Learning Group Activity in Soccer Videos from Local Motion

نویسندگان

  • Yu Kong
  • Weiming Hu
  • Xiaoqin Zhang
  • Hanzi Wang
  • Yunde Jia
چکیده

This paper proposes a local motion-based approach for recognizing group activities in soccer videos. Given the SIFT keypoint matches on two successive frames, we propose a simple but effective method to group these keypoints into the background point set and the foreground point set. The former one is used to estimate camera motion and the latter one is applied to represent group actions. After camera motion compensation, we apply a local motion descriptor to characterize relative motion between corresponding keypoints on two consecutive frames. The novel descriptor is effective in representing group activities since it focuses on local motion of individuals and excludes noise such as background motion caused by inaccurate compensation. Experimental results show that our approach achieves high recognition rates in soccer videos and is robust to inaccurate compensation results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Slow-Motion Detection Approach for Compressed Soccer Videos

Slow-motion replays are content full segments of broadcast soccer videos. In this paper, we propose an efficient method for detection of slow-motion shots produced by high-speed cameras in soccer broadcasts. A rich set of color, motion, and cinematic features are extracted from compressed video by partial decoding of the MPEG-1 bitstream. Then, slow-motion shots are modeled by SVM classifiers f...

متن کامل

Robust Multiple Manifold Structure Learning

We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structur...

متن کامل

Robust Multiple Manifolds Structure Learning

We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structur...

متن کامل

Tracking Players in Low-Resolution Videos of Soccer Games

This thesis concerns the topic of tracking soccer players. The problem is to select the best from relevant methods for tracking a single soccer player in a low-resolution video sequence captured by a single static camera. Achieving this is the basis for developing a system for tracking soccer players in low-resolution videos with multi-camera approach, which is the project assigned by the Softw...

متن کامل

Probabilistic Motion Segmentation of Videos for Temporal Super Resolution

A novel scheme is proposed for achieving motion segmentation in low-frame rate videos, with application to temporal super resolution. Probabilistic generative models are commonly used to perform unsupervised motion segmentation in videos. While they provide a general and elegant framework, they are hampered by severe local minima problems and often converge to inaccurate solutions, when there a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009